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Abstract

The Poisson distribution is ubiquitous for modeling count data but is limited in

application by its assumption of equidispersion. Alternative models exist that do not

suffer from this challenge but most are (1) limited to either under- or over-dispersed

data, (2) only provide estimates of moments, or (3) are computationally prohibitive for

large data sets. We review existing methods for count data with varying levels of dis-

persion, including some new results for generalized Poisson regression. We introduce a

latent-variable model based on a discretized log-normal distribution, develop a scalable

EM algorithm to estimate it, and provide straightforward likelihood-based theory for

performing statistical inference. Finally we illustrate these methods in simulation and

on a case study involving algae blooms; we find that our latent-variable model performs

nearly as well as the leading method (COM-Poisson regression) but at a fraction of the

computational cost.

Keywords: underdispersion, overdispersion, GLM, count data, latent-variable models

1 Introduction

The Poisson distribution is ubiquitous in the statistical modeling of count data (see, for

example, Frome et al., 1973; McCullagh and Nelder, 1989; Agresti, 2013). However, its

∗Work in progress. © The authors 2024. All rights reserved.
†Corresponding author. Email: ekhuch@umich.edu.
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assumption of equidispersion—that the variance is equal to the mean—is often unrealistic in

real-world applications. Historically, overdispersion has received a great deal of attention due

to (1) its frequent occurrence in real data sets and (2) compelling theoretical reasons why it

exists (see, for example, the discussion in Hilbe, 2011). More recently, however, researchers

have begun to devote more effort to understanding and accounting for underdispersion in

count data (e.g., Sellers and Morris, 2017).

Researchers have proposed various extensions of the standard Poisson model to account for

deviations from equidispersion. Some of these solutions—most notably the negative bino-

mial model (Lawless, 1987)—are appropriate for overdispersed but not underdispersed data.

Others, such as the condensed Poisson (Sellers and Morris, 2017) or binomial (Kokonendji,

2014) models, suffer from the opposite problem and are appropriate only for equidispersed

or underdispersed data.

Models appropriate for both underdispersion and overdispersion are relatively less common.

These models are particularly useful for situations in which one model will be applied to mul-

tiple data sets, each of which could be either underdispersed or overdispersed conditional

on covariates. While the benefit of these models is clear, their flexibility often comes at the

expense of complexity. For example, the Conway-Maxwell-Poisson (COM-Poisson) distribu-

tion is suitable for both cases but fitting it requires (1) approximations for moments and (2)

computationally demanding subroutines for estimating the normalizing constant (Shmueli

et al., 2005).

Among these more flexible models, the generalized Poisson distribution (GPD) is notable for

its relative simplicity, both in terms of its probability mass function (pmf) and its moments,

both of which have simple, closed-form expressions. Consul and Famoye (1992) and Famoye

(1993) developed GPD regression models now referred to as the GP-1 and GP-2, respectively.

Further, Zamani and Ismail (2012) generalized these models into a larger class called the GP-

P that parametrically nests these models. In reviewing existing models, we devote particular

attention to the GP-P model, including deriving its expected information matrix (EIM) and

a lower bound on it dispersion parameter, φ. While the appeal of the GP-P is clear, it suffers

from three notable disadvantages for underdispersed data:

1. The support is limited to counts below an upper bound.

2. The probability mass function is only approximate and does not sum to exactly to one.

3. The parameter space involves non-smooth restrictions designed to maintain the summed

probability mass within 0.5% of one.
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These disadvantages limit the general applicability of the GP-P model because they restrict

its applicability to data sets that are overdispersed, equidispersed, or—perhaps—slighly

underdispersed; though, the latter case can quickly become problematic, especially with

small counts. Thus, we summarize and consolidate results for this model largely for historical

purposes and as a benchmark for our proposed latent-variable method, which is based on

a latent Gaussian random variable, Zi, with mean and standard deviation modeled as a

function of covariates, xi, as follows:

µi = f(xi)
⊺β log(σi) = g(xi)

⊺α, (1)

for some analyst-specified covariate transformations, f and g. We could, for instance, employ

a linear model for the mean function and an intercept-only model for the log standard

deviation by setting these functions as follows: f(x)) = (1, x⊺)⊺ and g(x)) = 1. We then

implicitly define the outcome variable as Yi = ⌊exp(Zi)⌋, effectively setting

Pr (Yi = y;x,α,β) = Φ

[
log(y + 1)− f(x)⊺β

exp {g(x)⊺α)}

]
− Φ

[
log(y)− f(x)⊺β

exp {g(x)⊺α)}

]
, (2)

where Φ is the standard normal CDF. Whereas generalized Poisson models encounter chal-

lenges with underdispersed data, this latent-variable model does not because Zi—and con-

sequently Yi—has a valid probability distribution for any values of β and α. The primary

drawbacks of our latent-variable model are (1) it does not nest the Poisson distribution and

(2) the parameters are difficult to interpret directly. While these drawbacks are worth con-

sidering, we argue that its flexibility and computational convenience can, at least in some

settings, compensate for these challenges. In particular, when interest lies in quantifying pre-

diction uncertainty in the presence of varying levels of dispersion, our latent-variable model

is an appealing alternative to existing methods.

The rest of the paper proceeds as follows. Section 2 reviews existing methods for modeling

count data with varying levels of dispersion. Section 3 further develops the discrete log-

normal model discussed above, including algorithms for computing the maximum likelihood

estimate and its large-sample properties. Sections 4 and 5 compare the methods in simulation

and a case study, respectively. Finally, Section 6 concludes with a brief summary and

discussion.
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2 Existing Methods

In this section, we review three existing methods for modeling count data with varying

levels of dispersion, the first two of which are likelihood based. Throughout, we restrict

our attention to models that are capable of describing both underdispersed and overdis-

persed data—omitting, for example, negative binomial models that are appropriate only for

overdispersed data. In Sections 4 and 5, we compare several variants of these methods to

our proposed discrete log-normal model. To keep the notation light, we use β to repre-

sent regression parameters for the mean and α, for the variance. Note, however, that these

parameters are not directly comparable across models. We handle this complexity in our

simulation study by comparing estimates of predictive quantities, such as conditional means

(fitted values).

2.1 Generalized Poisson Models

The family of generalized Poisson distributions (GPD) includes distributions that are both

underdispersed and overdispersed relative to the standard Poisson distribution. Further, its

moments are available in closed form—a desirable property from a computational vantage

point. For these two reasons, the GPD—at least at first glance—appears to be a promis-

ing candidate method in our search. As we describe its properties, however, we will see

that it suffers from some theoretical challenges that limit its applicability to underdispersed

data. Thus, we include it as a comparator, but we suggest caution in applying it when

underdispersion may be present.

The generalized Poisson distribution (GPD) introduces an additional parameter, δ ∈ (−1, 1),

to the standard Poisson distribution. Following Consul (1989), the pmf can be expressed as

p(y | θ, δ) = θ (θ + δy)y−1 exp(−θ − δy)

y!
for y = 0, 1, 2, ... (3)

with mean E(Y ) = θ/(1 − δ) and variance Var(Y ) = θ/(1 − δ)3. When δ = 0, the GPD

reduces to the standard Poisson distribution. When 0 < δ < 11 (the overdispersed case),

Y can equal any non-negative integer and θ, any positive real value. When −1 < δ < 0

(the underdispersed case), two restrictions are necessary. First, the support is truncated

such that θ + δy > 0. This restriction ensures that the pmf is non-negative. Second, the

parameters are constrained such that max(−1,−θ/4) < δ. Although the infinite summation,∑∞
y=0 p(y | θ, δ), does equal unity, the summation over the truncated support,

∑m
y=0 p(y | θ, δ),

1Some authors allow δ ∈ [−1, 1], but we exclude equailty to avoid some technicalities (e.g., infinite
moments).
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does not. However, the above restriction on the parameter space ensures that the truncation

error is less than 0.5%, which several authors have argued is sufficient for many practical

applications (Consul and Shoukri, 1985; Consul and Famoye, 2006).

Consul and Famoye (1992) and Famoye (1993) showed how to introduce covariates to model

the GPD’s mean function, similar to the Poisson generalized linear model (GLM). The two

models they introduced have found plentiful applications in the statistics literature (see, for

example, Wang and Famoye, 1997; Famoye et al., 2004) and have come to be known as the

GP-1 and GP-2 regression models (Yang et al., 2009). More recently, Zamani and Ismail

(2012) introduced the GP-P model, a model that parametrically nests the GP-1 and GP-2

models. The development of the GP-P mirrors that of the NB-P, the family of models that

nests the two primary variants of negative binomial regression (Hilbe, 2011)2. The GP-P

facilitates comparisons of the GP-1 and GP-2 models and, perhaps more importantly, allows

greater flexibility in selecting a variance function.

The GP-P model transforms the parameters of the standard GPD such that θ = µ/(1 + ϕµP−1)

and δ = ϕµP−1/(1 + ϕµP−1). The pmf for the GP-P is then given as follows:

p(y |µ, ϕ, P ) =
µ(µ+ ϕµP−1y)y−1exp

(
− µ+ϕµP−1y

1+ϕµP−1

)
(1 + ϕµP−1)y y!

,

for µ > 0, P ∈ (−∞,∞), ϕ ∈ (ϕmin(µ, P ),∞),

(4)

where µ = E(Y ), ϕ is the dispersion parameter with minimum value ϕmin(µ, P ), and P

determines the variance function as follows: Var(Y ) = (1 + ϕµP−1)2µ. When ϕ = 0, the

GP-P reduces to the standard Poisson distribution. ϕ > 0 also produces a valid pmf, but

it is overdispersed relative to the Poisson. ϕ < 0, on the other hand, corresponds to an

underdispersed distribution that is only approximately valid.

To ensure the pmf sums to a value close to one, we must restrict ϕ such that the corresponding

parameters in the original parameterization (θ, δ) respect the restrictions described above.

Because these restrictions are somewhat complicated, we denote the minimum value of ϕ

generically as ϕmin(µ, P ). We show in Appendix B that ϕmin(µ, P ) ≥ −2−P when P ∈ [1, 2];

for other values of P , ϕ has no lower bound.

These complications raise serious concerns regarding the applicability of the GP-P model—

and, more generally, the GPD model—to underdispersed data. In particular, allowing ϕ to

depend on covariates is not advisable unless (1) underdispersion is unlikely to be present

and (2) we employ a link function that ensures ϕ > 0.

2Note, however, that the variance functions for the NB-P and GP-P generally do not agree.
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We include the GP-P in our simulation study (Section 4) for the sake of comparison. In

contrast with the other methods, however, we assume that ϕ is fixed across observations

to avoid computational and theoretical issues related to the challenges described above.

We estimate the GP-P model via maximum likelihood estimation and employ asymptotic

likelihood-based standard errors for inference; the details can be found in Appendix A. In

particular, we were unable to locate the expected information matrix (EIM) in the literature,

so we derive it in Appendix A.1.

2.2 COM-Poisson Models

The COM-Poisson distribution is another appealing alternative for modeling count data with

varying degrees of dispersion. It was revived in the statistics literature by Shmueli et al.

(2005). Subsequently, Lord et al. (2010) and Sellers and Shmueli (2010) introduced COM-

Poisson generalized linear models, which have since been generalized in various directions; see

Sellers (2023) Chapter 5 for an overview. Our development most closely follows Chatla and

Shmueli (2018), which presents an efficient iteratively reweighted least squares algorithm for

fitting COM-Poisson models in which the dispersion is modeled as a function of covariates.

Similar to the generalized Poisson distribution, the COM-Poisson distribution introduces an

additional parameter into the Poisson distribution that controls the degree of dispersion.

The probability mass function for the COM-Poisson distribution is defined as follows:

Pr(Y = y |λ, ν) = λy

(y!)νζ(λ, ν)
, where ζ(λ, ν) =

∞∑
k=0

λk

(k!)ν
(5)

with parameters λ > 0 and ν ≥ 0. When ν = 0, we constrain λ ∈ (0, 1) such that the sum

converges and the distribution is non-degenerate; note that this case reduces to the geometric

distribution. When ν > 0, we require only that λ > 0. Note that ν = 1 corresponds to

the standard Poisson distribution. ν < 1 corresponds to over dispersion and ν > 1, to

under dispersion. As ν → ∞, we obtain the Bernoulli distribution as a limiting case with

parameter λ
1+λ

. ζ(λ, ν) plays the role of normalizing constant. Unfortunately, it does not

have a closed-form representation, so it must be approximated in practice, either analytically

or via numerical approximation.

One particularly attractive aspect of the COM-Poisson distribution is that it is a member

of the exponential family, having natural parameters log(λ) and −ν. Thus, it inherits some

desirable properties from that class, such as useful expressions for its moments and direct

application of many aspects of the theory of GLMs. We employ the following common GLM
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formulation:

log(λi) = f(xi)
⊺β (6)

log(νi) = g(xi)
⊺α (7)

The log links ensure that this formulation always produces valid values of λi and νi. We

denote the regression parameter for λi as β because λi ≈ E(Yi |xi) when νi ≈ 1. Note,

however, that λi is quite far from E(Yi |xi) when νi is far from one. Thus, although we

denote the regression parameter for λi as β, it may not correspond closely with the mean in

practice and, consequently, is not be directly comparable to regression parameters produced

by other methods.

In our simulation study, we employ the model-fitting procedure provided in Chatla and

Shmueli (2018). The procedure is a two-step IRLS algorithm that leverages the expected

information matrix for efficiency and robustness. It makes use of two approximations for

increased efficiency: (1) Stirling’s approximation for large values of log(yi!) and (2) asymp-

totic expressions for the mean and variance due to Gaunt et al. (2019). Inference proceeds

via standard large-sample asymptotics, using the inverse expected information matrix at the

estimated parameter values to estimate their covariance.

2.3 Methods Based on Moment Conditions

The next family of methods we discuss is those based on moment conditions, which encom-

passes both ‘quasi-likelihood’ and ‘pseudo-likelihood’ methods. Both quasi-likelihood and

pseudo-likelihood methods generalize maximum likelihood estimation. The primary differ-

ence is that quasi-likelihood is based on deviance residuals while pseudo-likelihood methods

are based on Pearson residuals (Nelder and Lee, 1991).

Rather than assuming a full probability distribution, these methods assume a paramet-

ric form only for certain moments of the data-generating distribution. For instance, the

quasipoisson model assumes that log(µ) = f(x)⊺β and var(Y ) = ϕµ, where µ = E(Y ), β is

a vector of regression coefficients, and ϕ is an ‘overdispersion parameter.’ Nelder and Lee

(1991) and Lee and Nelder (2000) discuss extensions that also model ϕ using covariates, a

suggestion first proposed in the GLM literature by Pregibon (1984). In Sections 4 and 5, we

implement a version of this method with log(ϕ) = g(x)⊺α, where g maps the covariate x to

the linear predictors for the variance function and α is an unknown vector of coefficients.
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The key benefit of these moment-based models is that the analyst does not need to make any

distributional assumptions beyond the first and second moments. Estimation is performed

by solving a set of estimating equations. Using the pseudo-likelihood formulation of our

quasipoisson model with log(ϕ) = g(x)⊺α, there are two such equations:

0 =
n∑

i=1

Yi − µi

ϕi

f(xi) =
n∑

i=1

Yi − exp {f(xi)
⊺β}

exp {g(xi)⊺α}
f(xi) (8)

0 =
n∑

i=1

(
R2

i

ϕi

− 1

)
g(xi) =

n∑
i=1

(
[Yi − exp {f(xi)

⊺β}]2

exp {f(xi)⊺β + g(xi)⊺α}
− 1

)
g(xi), (9)

where Ri = (Yi−µi)/
√
µi denotes the Pearson residuals. As noted by Nelder and Lee (1991),

the challenge with these estimating equations is that they are not independent; equation (8)

depends on (9) and vice versa. Nelder and Lee (1991) suggests solving the equations in

alternating form but concludes the paper noting that “there remain substantial statistical

problems in making inferences from these models.” The key issue is that the asymptotic

covariance matrices assume (in our notation) that either α or β is known; i.e., they do not

account for the fact that α is estimated when making inferences for β, or vice versa.

We propose a simple solution to this problem in the form of stacked estimating equations

(Carroll et al., 2006, Appendix A.6.6). We start by fixing α = 0 and solving Equation (8)

for β. We then fix β at this solution and solve Equation (9) for α. We continue iterating

between solving Equations (8) and (9), each time fixing one of the parameters at its most

recent estimated value, until solving each equation k ∈ N times (we set k = 3 in Sections

4 and 5). We then calculate asymptotic standard errors for the final estimates, α̂ and β̂,

using a sandwich estimator from the full set of 2k equations.

In Section 4, we show in simulation that this procedure is computationally efficient and

produces statistically calibrated estimates for the first two moments with modest sample

sizes. The primary drawback of this method compared to the others that we investigate is

that inference is limited to the first two moments of the data distribution.

3 Discrete Log-Normal Model

In the last section, we introduced three existing methods for modeling count data with

varying levels of dispersion, each of which possessed certain desirable qualities. The GP-P

model is computationally efficient (because its moments are available in closed form), but it

suffers from some theoretical issues that restrict its use to only mild levels of underdispersion.
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In contrast, the COM-Poisson model is always a valid probability distribution and, moreover,

is a member of the exponential family. However, its moments and normalizing constant are

not available in closed form, so they must be approximated, which can be computationally

demanding.

The moment-based models are both computationally efficient and always result in valid

statistical models, so they are an appealing alternative when interest lies in the first two

moments of the data. There is a cost to making limited assumptions, however. For instance,

various GLM model diagnostics and modeling tools are not directly applicable. Additionally,

inference for predictive quantities—in particular, prediction intervals for a new response—are

complicated by the fact that these methods do not possess a predictive distribution. Some

methods for the latter challenge have been introduced in the literature; e.g., conformal meth-

ods (Lei et al., 2018; Foygel Barber et al., 2021) and prediction intervals specifically designed

for count data (Kim et al., 2022), some of which do not require a predictive distribution.

While these methods are promising, practitioners should also be aware of their shortcomings,

which often include substantial increases in required computation time, overly wide intervals,

or coverage guarantees that apply only marginally or require additional assumptions.

In this section, we develop a discrete log-normal regression model that offers an attractive

compromise among the qualities discussed above. In particular, the discrete log-normal

model possesses the following desirable properties:

• It allows a wide range of dispersion from almost constant variance to extreme overdis-

persion

• Model-fitting and inference is computationally efficient

• The parameters do not need to obey any constraints

• The model possesses a valid predictive distribution

In the remainder of this section, we describe the procedures for applying this model in

practice. Section 3.1 describes maximum likelihood model-fitting procedures, including an

efficient second-order EM algorithm. Section 3.2 discusses large-sample inference procedures,

including several approaches for forming prediction intervals.

3.1 Model-fitting Procedures

This section describes two procedures for fitting the discrete log-normal model. The first

is a standard Newton–Raphson algorithm. The second is a an efficient second-order EM
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algorithm.

3.1.1 Newton–Raphson Algorithm

The first approach we introduce is to maximize the log likelihood via the Newton–Raphson

algorithm. Let θ = (α⊺,β⊺)⊺ and let ℓ(θ) denote the log-likelihood—the log of Equation (2)

as a function of θ. The Newton–Raphson updates can then be expressed as follows:

θ(t+1) = θ(t) −H
(
θ(t)
)−1

s
(
θ(t)
)
, (10)

where s (θ) = ∂
∂θ
ℓ(θ) is the score function and H (θ) = ∂2

∂θ∂θ⊺ ℓ(θ) is the observed information

matrix. Appendix C.1 provides the gradient and Hessian required for these Newton–Raphson

updates. They rely on moments of a truncated normal distribution which, fortunately, are

available in closed form. However, the moments are ratios with (potentially very small) prob-

abilities in the denominator, so accurately computing them requires some care. Appendix

C.1 shows how to do this using the identity log(b− a) = log(a) + log(b/a− 1) for 0 < a < b.

We note that first-order or quasi-Newton methods (e.g., BFGS) could also be applied. How-

ever, in simulations not reported in this paper, we found that the standard Newton–Raphson

algorithm performed better, so it is the only one detailed here. With very large sample sizes,

we expect that first-order methods such as stochastic gradient ascent might perform rela-

tively better.

3.1.2 Expectation Maximization Algorithm

We now provide a second-order EM algorithm for fitting the discrete log-normal model.

Because Yi is a deterministic function of the latent Zi, the ‘full-data’ log-likelihood is simply∑n
i=1 log p(zi;α,β), where p(zi |xi,α,β) is the normal pdf with mean µi = exp {f(xi

⊺β)}

and standard deviation σi = exp {g(xi
⊺α)}.

The E-step of the algorithm involves calculating the expected value of the full-data log

likelihood under the conditional distribution of Zi given Yi = yi. This conditional distribution

is a truncated normal distribution whose moments—conveniently—are available in closed

form (Kotz et al., 1994); Equation (50) in Appendix C.2 provides the formulas. Denoting

the first and second moments of this distribution as e1i and e2i, the full expectation becomes

q(α,β) =
n∑

i=1

{
− log

(√
2π
)
− g(xi)

⊺α− e2i − 2e1i f(xi)
⊺β + [f(xi)

⊺β]2

2 exp {2 g(xi)⊺α}

}
. (11)

10



The M-step of the algorithm then involves finding values of α and β that maximize q(α,β).

Because q(α,β) is quadratic in β, straightforward matrix calculus reveals that the optimal

value of β is

β∗ =
(
F⊺Σ−1F

)−1
F⊺Σ−1e1, (12)

where F is an n-row matrix with row i equal to f(xi)
⊺β, Σ is an n × n diagonal matrix

having the i-th diagonal element equal to σ2
i = exp {2 g(xi)

⊺α}, and e1 is an n-dimensional

column vector having element i equal to e1i.

In contrast, α does not have a closed-form update, so we use Newton–Raphson updates to

approximately maximize q(α,β) with respect to α. We provide the gradient and Hessian

in Appendix C.2. Because these values depend on β, we first update β using Equation (12)

and then perform Newton–Raphson updates for α using the updated value of β.

EM iterations proceed until changes in the marginal log-likelihood (or parameters) falls below

a pre-specified threshold. The full EM algorithm is summarized in Algorithm 1.

Algorithm 1 Expectation-Maxmization Algorithm for the Discrete Log-Normal Model

ℓprev ← ℓ(α,β)
ℓcurr ←∞
while ℓcurr − ℓprev > ϵ do

ℓprev ← ℓcurr
Calculate e1 and e2 using Equation (50) in Appendix C.2
Σii ← exp {2 g(xi)

⊺α}
β ← (F⊺Σ−1F)

−1
F⊺Σ−1e1

for k in 1, 2, . . . , K do
Calculate e1 and e2 using Equation (50) in Appendix C.2
Calculate s̃β(α), H̃β(α) using Equation (51) in Appendix C.2
α← α− H̃β(α)−1s̃β(α)

end for
ℓcurr ← ℓ(α,β)

end while

3.2 Inference Procedures

Both the Newton–Raphson and EM algorithms provided in the previous section provide

strategies for computing the maximum likelihood estimate. Because the discrete log-normal

model satisfies the standard regularity conditions for large-sample theory of maximum like-

lihood estimators, the inference procedures are straightforward. In particular, under correct

model specification, standard large-sample theory guarantees that θ̂ is consistent and asymp-

totically normal:
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√
n(θ̂ − θ)

d→ Normal
(
0,H(θ)−1

)
, (13)

where H(θ) is the expected (Fisher) information matrix. In practice, we do no know the

expected information matrix because (1) it is not available analytically and (2) we do not

know the true value of θ. Fortunately, it suffices to use observed information matrix for

statistical inference because it is a consistent estimate of the expected information matrix.

Under incorrect model specification, the theory of m-estimation can be leveraged to show

that θ̂ converges in probability to a parameter vector that solves the score equations. Further,

θ̂ is asymptotically normal with covariance matrix that can be consistently estimated via a

sandwich estimator. In our simulation study, we find that the observed information matrix

provides adequate statistical inference under our assumed data-generating model. However, a

robust sandwich estimator may be more appropriate when model mispecification is suspected.

We now turn our attention to generating prediction intervals. Let Z∗ denote a new value of

the latent response variable with associated covariate vector x. Then by Slutsky’s Theorem,

we have

Z∗ − f(xi
⊺β̂)√

exp {2 · g(xi)⊺α̂}+ f(x)⊺[H(θ)−1]11f(xi)/n

d→ Normal(0, 1), (14)

where [H(θ)−1]11 is the top-left block of H(θ)−1 corresponding to β. Thus, we can form a

large-sample (1− ϵ) · 100% prediction interval for Z∗ as follows:

PI = f(xi
⊺β̂)± Φ−1(ϵ/2)

√
exp {2 · g(xi)⊺α̂}+ f(x)⊺[H(θ)−1]11f(xi)/n. (15)

While this approach is asymptotically valid, it is somewhat unsatisfying because it propagates

only some of the uncertainty arising from estimating α. Specifically, it propagates the

uncertainty insofar as it affects the asymptotic variance of β̂, but it does not address the

uncertainty arising from the direct inclusion of α̂ in the standard error computation.

To address this challenge, we introduce an approximate Bayesian approach that could be

justified via the Bernstein—von Mises theorem or, alternatively, based on its asymptotic

equivalence with the approach detailed above. We first generate a large number of samples

of θ from its approximate posterior distribution—Normal(θ̂,H(θ̂)). Then for each sample

we generate a value of Z∗ conditional on the sampled value of θ. Finally, we select quantiles

of the sampled Z∗ values such that (1 − ϵ) · 100% of the sampled values fall between the

quantiles.
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Note that both of these approaches generate prediction intervals for Z∗, not a new value

of the count—call it Y ∗. Since there is a deterministic mapping from Z∗ to Y ∗, this is

not particularly problematic. For the Bayesian approach, we must accept that our nominal

coverage rate will not be exactly (1− ϵ) · 100%. For the frequentist intervals, we can either

(1) create conservative intervals with at least (1 − ϵ) · 100% asymptotic coverage or (2)

randomize the procedure such that the coverage is exactly (1−ϵ) ·100% in repeated samples.

We illustrate the latter approach for the upper limit only (the lower limit is similar). Suppose

that the upper limit for Z∗ is 3.6, corresponding to a count of 36. We would then compute

the additional coverage probabilities of extending our interval from log(36) to 3.6 and from

log(36) to log(37); call these values a and b, respectively. The upper limit of our interval

would then be 35 (inclusive) with probability b/(a+ b) and 36 with probability a/(a+ b).

4 Simulation Studies

In this section, we use simulation studies to more fully explore (1) parameter estimation,

particularly for E(Yi) ≡ µi and SD(Yi) ≡ σi, in the face of model mispecification, (2)

computation time for large sample sizes, and (3) prediction intervals for unobserved data.

4.1 Method Comparison

The DLN model allows for varying (both over- and under-) dispersion for a single count

data set and does so for large sample sizes in a computationally fast manner. The COM-

Poisson model is the competing model that can account for varying dispersion, but it is

known for being computationally burdensome. Thus, we chose to simulate data under the

COM-Poisson model, (6), and estimate {(µi, σi); i = 1, . . . , n} for the various competing

models.

We expect that the COM-Poisson model will be the most accurate model for estimation as

it is the data-generating model, but that it will also be the slowest-fitting model. We expect

the DLN model to be the strongest competitor – as it accounts for varying dispersion – but

whose likelihood will be different than the data-generating model; thus, we do not expect

as accurate estimates as the COM-Poisson model. We fit the DLN model using both the

Newton-Raphson and EM algorithms. We also fit two other models for count data, the GP-1

model and “quasi”-Poisson model (EPL). Both of these models account for constant over-

and under-dispersion for a single data set. These two methods should be fast, but will not

account for the varying dispersion.
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Figure 1: Simulated data set for n = 100. Left: values of yi versus xi1; Center: values of yi
versus xi2; data-generating variance, σ2

i , versus mean, µi. The color of the points indicates
whether the dispersion is greater than 1 (green) or not (tan).

To simulate our data, we draw values for two covariates, xi1 and xi2, independently from a

N(0, 1) distribution for i = 1, . . . , n. We leave these values fixed for all simulations of the

same sample size, n. We include both main effects and an interaction in the linear terms of

(6). Specifically,

f(xi)
Tβ = β0 + xi1β1 + xi2β2 + xi1xi2β3,

g(xi)
Tα = α0 + xi1α1 + xi2α2 + xi1xi2α3,

and fix β = (3, 0.05,−0.1, 0.02)T and α = (0.1, 0,−0.2, 0.05)T . These parameter values

create data with an average mean of approximately 20 and variance of approximately 18

(slightly under-dispersed on average, but close to equi-dispersed). Note, however, that the

variance-to-mean dispersion ranges from approximately 0.4 to 1.8. We draw {yi; i = 1, . . . , n}

from Equation (5). For each sample size we generate a new response variable 1000 times

and estimate µ̂i and σ̂i for each model. We do this for n ∈ {50, 100, 250, 500}.

Figure 1 shows an example of the simulated data for n = 100. The color of the points shows

whether the true variance is greater than the mean (green points) or the variance is less than

the mean (tan points). The left and center plots show the relationship of yi to the covariates,

xi1 and xi2 respectively. What’s noteworthy is that the data-generating relationships are

visible in these plots. For example, β1 = 0.05, indicating that there should be a small

positive relationship between yi and xi1, as seen in the plot on the left. Additionally, α1 = 0

and thus, as expected, it is difficult to see a pattern in the dispersion relative to xi1; however,

α2 = −0.2 and the center plot shows a clear relationship between the dispersion and xi2.

The right plot shows the variance versus the mean, illustrating the varying dispersion for

different observations.

Figures 2 and 3 show how the 95% confidence interval coverage changes for each model as the

sample size increases for µi and σi, respectively. Each boxplot shows the distribution for the

coverage of the n observations. For the mean, all methods perform comparably (see Figure

2). For the standard deviation, there is a different story. When n is relatively small (n = 50

14



Figure 2: Coverage of 95% confidence intervals for µi for the n observations for each of the
five model-fitting methods when n = 50 (top left), n = 100 (top right), n = 250 (bottom
left), and n = 500 (bottom right).

or 100), the DLN model (particularly fit via Newton-Raphson method) has coverage closest

to 95% for all observations, even outperforming the “true” data-generating model, MPCMP.

However, for large values of n (n = 500), the DLN model does not perform as well as the true

model, MPCMP, nor the EPL model, which assumes constant variance across observations.

This makes sense since as n gets larger, the approximation of the DLN likelihood will be less

similar to the true data-generating generalized Poisson likelihood, which the MPCMP and

EPL are better able to capture. What is surprising is how the coverage for the GP-1 model

gets much worse as n increases, even though it is a generalized Poisson model. This drives

home the point that an incorrect mean-variance specification can result in poor inferences

no matter the sample size.

Computationally we expected the GP-1 and EPL models to outperform the other methods

and they do, with each fitting the models when n = 500 in an average of 0.0063 and 0.0026

minutes (0.38 and 0.15 seconds), respectively. Also as expected, the MPCMP model is the

slowest, taking 2.1132 minutes on average to fit the same data. The DLN-Newton and DLN-

EM methods are a happy medium and comparable to each other in computation time, taking

0.04 minutes (≈2.5 seconds) to fit these methods. We note that this takes into account fitting

the DLN-Newton method twice: once to identify better starting values for α and once to

get the final parameter estimates. The data were generated and models fit consecutively on

an AMD EPYC 7502 processor running at 2.50GHz.
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Figure 3: Coverage of 95% confidence intervals for σi for the n observations for each of the
five model-fitting methods when n = 50 (top left), n = 100 (top right), n = 250 (bottom
left), and n = 500 (bottom right).

4.2 Prediction Intervals for the DLN Model

In this section, we test the two prediction interval methods discussed in Section 3.2: (1) the

plug-in method and (2) the asymptotic Bayes approach in which we draw samples of the

estimated parameters. For comparison, we also included a correctly specified fully Bayesian

approach, which we estimated using the sampling importance resampling algorithm (Rubin,

1987, 1988; Smith and Gelfand, 1992). Within the simulation, we sampled α and β as follows:

α ∼ N


4
0

 ,

0.22 0

0 0.052


 , β ∼ N


−1

0

 ,

0.22 0

0 0.052


 .

We then sampled the outcomes from the DLN model conditional on these values of α and

β. The fully Bayesian approach uses the above (independent) distributions for its prior. We

tested four sample sizes: 10, 30, 100, and 400. With each sample size, we ran 400 repetitions

and computed the marginal coverage, coverage rMSE (as detailed in Section 4.1), and median

interval length. Table 1 displays the results.

All three methods produce approximately calibrated prediction intervals in large (n ≥ 100)

sample sizes. Because the observed values for the coverage rMSE are near their theoretical

value (
√

0.95 ∗ 0.05/400 ≈ 0.11), the methods are both marginally and conditionall cali-

brated. In small sample sizes, we observe that only the fully Bayesian approach achieves
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Summary Method n=10 n=30 n=100 n=400

Marginal
Coverage

Plug-in 0.908 (0.006) 0.920 (0.004) 0.939 (0.002) 0.942 (0.002)
Asymp. Bayes 0.932 (0.005) 0.926 (0.004) 0.941 (0.002) 0.941 (0.002)
Full Bayes 0.944 (0.004) 0.947 (0.002) 0.950 (0.002) 0.946 (0.001)

Coverage
rMSE

Plug-in 0.044 (0.006) 0.033 (0.004) 0.017 (0.002) 0.014 (0.001)
Asymp. Bayes 0.022 (0.004) 0.027 (0.003) 0.015 (0.002) 0.015 (0.001)
Full Bayes 0.011 (0.003) 0.010 (0.002) 0.011 (0.001) 0.012 (0.001)

Median
Length

Plug-in 96.5 (1.0) 88.8 (1.3) 87.0 (0.6) 86.0 (0.4)
Asymp. Bayes 111.8 (2.8) 91.0 (1.3) 88.0 (0.9) 86.0 (0.4)
Full Bayes 91.5 (1.2) 89.0 (1.4) 84.8 (1.7) 85.8 (1.4)

Table 1: Coverage and median interval lengths for three prediction interval methods. The
Plug-in and Asymp. Bayes methods correspond with those explained in Section 3.2. The
prior for the fully Bayesian method matches the data generating distribution.

near-nominal coverage. In practice, however, the empirical coverage of this method will de-

pend on prior specification. The asymptotic Bayes approach offers a compromise between

the fully Bayesian approach and the plug-in method in that it produces coverage rates within

two percentage points of the nominal level without requiring ‘correct’ prior specification. Be-

cause it does not leverage prior information, the increased coverage necessarily comes at the

expense of slightly wider interval widths.

5 Case Study

Our simulation results indicate that the COM-Poisson, EPL, and DLN models can achieve

comparable statistical performance; however, the COM-Poisson model requires much longer

computational time. To further assess the computational scalability of the EPL and DLN

methods, we applied them to a large-scale forecasting problem: week-ahead COVID-19 case

count prediction for the European area. We did not consider the GP-P model because our

simulation study indicated that the GP-P model performs poorly in the presence of varying

dispersion. Relatedly, we were unable to fit the COM-Poisson model due to the size of the

data set.

We used openly available case count data from Google for the comparison (Wahltinez et al.,

2020). We filtered down to the time period July 1, 2020 – August 31, 2022 and removed

countries with data abnormalities; e.g., gaps in the data. The resulting data set includes 27

countries.

The functions f and g include separate intercepts, day-of-week effects, and cubic natural

splines over time. We selected the degrees of freedom for the natural splines via grid-search

cross validation, which resulted in 50 degrees of freedom for f and 12 for g. This specification

allows both the mean and dispersion to flexibly fit nonlinear patterns in the data; however,

it allows the mean function to change over shorter time scales. The resulting design matrices
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Figure 4: New cases of COVID-19 (black line) in the first 3 of 27 European countries and 95%
pointwise prediction bands (gray shaded area) from the discrete log-normal (DLN) model.
The model is fit to case-count data from July 1, 2020 to August 24, 2022. The last week
of plotted counts (separated by the dashed gray line) offer an out-of-sample performance
comparison.

We fit the models using case-count data through August 24, 2022 and used the final week

(August 25 – August 31 2022) as a test set to evaluate model performance. Under this

configuration, the training and test sets include 21,194 and 189 case counts, respectively.

Figure 4 plots the observed case counts against 95% prediction bands from the DLN method

for the first three countries (alphabetically), with the final week representing an out-of-

sample comparison. The figure indicates that the DLN method is able to accurately model

the changes in case counts over time, including varying dispersion. Plots for the remaining

24 countries are available in Appendix D. The coverage rate of the DLN prediction intervals

was 88.9% with a Monte Carlo standard error of 2.7%, indicating some undercoverage, likely

due to linear extrapolation error in the natural splines.
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Figure 5: Performance comparison of the extended pseudo-likelihood (EPL) and discrete log-
normal (DLN) models in predicting COVID case counts for 27 European countries. Each
data point represents a single country. The final panel shows paired differences. Averages
and standard errors are displayed in Table 2.

Figure 5 plots (point) predictive performance for the EPL and DLN models. Each data point

represents one of the 27 countries. The figure shows bias and mean absolute error (MAE) as

a percentage of historical (over the time period of the training data) average case counts at

the country level; this normalization allows an appropriate comparison across countries of
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different sizes and infection intensities. The figure indicates that the EPL and DLN models

achieved similar predictive performance with neither clearly dominating the other.

Table 2 displays the average values of the performance metrics and their associated standard

errors, including pairwise comparisons. The results indicate that the DLN method had

slightly higher bias and slightly lower MAE on average compared to the EPL method. The

table also displays the compute time for the two methods. The DLN method required slightly

less computation time at 5.7 minutes compared to 8.7 minutes for the EPL method on a

personal computer with 16 GB of memory and 8 CPUs. We fit the DLN method using

the EM algorithm because we found the EM algorithm to be more stable and insensitive to

starting values than the Newton–Raphson algorithm.

EPL DLN Difference
Bias % 9.6% (0.8%) 10.6% (0.9%) 1.0% (0.4%)
MAE % 24.7% (1.0%) 23.7% (1.1%) -1.0% (0.3%)
Elapsed Time (Minutes) 8.72 5.72 N/A

Table 2: Performance comparison of the extended pseudo-likelihood (EPL) and discrete log-
normal (DLN) models in predicting COVID case counts for 27 European countries. The DLN
method exhibits slightly more bias, lower MAE, and a shorter model-fitting time. Figure 5
plots the country-level data.

These results agree with those of the simulation study, showing that the EPL and DLN

methods achieve similar predictive performance on count data with varying dispersion, and

they are both scalable to large data sets.

6 Discussion

This paper presents several statistical methods for modeling count data with varying levels

of dispersion. We focus specifically on methods that are scalable to large-scale data sets,

such as the COVID-19 data set analyzed in our case study. Although COM-Poisson mod-

els have strong theoretical backing, these models do not scale well due to the presence of

a computationally demanding normalizing constant, which can limit their applicability in

practice. The GP-P model, on the other hand, is computationally scalable, but it poses

some theoretical and computational issues in the presence of underdispersion because its

PMF does not sum exactly to one in that case. For data sets known to be overdispersed

(at all x), however, the GP-P is a viable choice and a full-fledged competitor to negative

binomial models.

The results from our simulation study and case study indicate that moment-based methods

(e.g., the EPL method) are a suitable alternative when objective of the analysis is to estimate

only the first two moments of the data distribution. If only the first moment is of interest,
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it would suffice to estimate the regression parameters via Poisson regression provided robust

standard errors are employed for inference. The benefits of the EPL method (and its quasi-

likelihood cousin) are that (a) it can achieve better efficiency by modeling the variance and

(b) it provides a richer set of inferences in that it estimates both the mean and variance of

the counts at all x.

In some cases, however, estimates of only the first two moments may not be sufficient. Our

case study offers one such example. For COVID-19 forecasting, it would be preferable to

produce a predictive distribution to fully convey the forecast uncertainty and appropriately

calibrate downstream decision-making, such as inventory planning and staffing. Another

example is anomaly detection with application monitoring data (Veasey and Dodson, 2014);

i.e., monitoring counts of website events over time to detect outages or sudden changes in

user behavior.

When a full predictive distribution is required, the discrete log-normal (DLN) introduced

in Section 3 is a viable alternative. Our results indicate that the DLN model is computa-

tionally scalable, achieves comparable statistical performance compared to moment-based

methods, and enables researchers to create calibrated prediction intervals. Compared to

transformation-based methods, the DLN method offers the additional benefit of respecting

the natural domain of count data. This benefit is especially important when the counts are

small or interest lies in low-probability quantiles close to zero.

We see several possible extensions of the DLN model that would further increase its utility.

One such extension would be to allow correlation across proximal time points, which would

be accommodated via the latent Gaussian formulation. Another useful extension would

be to generalize the form of the transformation from the latent Gaussian variates to the

counts. This extension would enable application of the method to non-Poissonian count

data exhibiting, for example, zero inflation or high tail probability.
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A Details for Fitting the GP-P Model

In this appendix, we provide the details for the GP-P model, including the procedures for

estimation and inference. We first derive the expected information matrix (EIM). Then

we show how to leverage it to maximize the GP-P likelihood via iteratively reweighted

least squares. Finally, we describe the likelihood-based inference procedures we employed in

Section 4.

A.1 Fisher information for the GP-P

In this section, we derive the Fisher information for the GP-P using the reparameterization

formula. Section A.1.1 gives the derivation, and Section A.1.2 displays the results of some

numerical checks.

A.1.1 Derivation

We will start from the GP-2 because its Fisher information matrix is diagonal (Famoye

(1993), equations (3.9)–(3.11)), which simplifies computations.

The reparameterization formula can be described as follows. Suppose we know the Fisher

information of a probability distribution with parameter vector ξ. Further, suppose we

would like to know the Fisher information matrix for the distribution parameterized with a

different vector τ , where ξ is a continuously differentiable function of τ . Then, under some

technical assumptions, the Fisher information with respect to τ can be calculated as follows

(See Lehmann and Casella (2006) equation (2.6.16)):

J τ (τ ) = J′ J ξ

(
ξ(τ )

)
J, (16)

where J is the Jacobian of the transformation whose ij-th element is equal to dξi
dτj

. The

technical assumptions for this result are not met in the underdispersed case because the

support of the distribution depends on the parameter space. We address this separately in

the next section, showing that the formula produces a useful approximation provided (1) the

mean is sufficiently large and/or (2) the degree of underdispersion is minimal.

We relate the GP-P and GP-2 as follows. Let ξ = (µ, α)′, be the parameters of the GP-2

distribution, where µ is the mean and α is the dispersion parameter, and τ = (µ, ϕ)′ the

mean and dispersion parameters of the GP-P distribution. Note that the mean from the two

distributions are the same, but the dispersion parameters are different to accommodate the
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different values of P in the GP-P. The dispersion parameters can be related by setting the

variance functions to be equal:

(1 + ϕµP−1)2 µ =(1 + αµ)2 µ

ϕµP−1 =αµ

ϕµP−2 =α.

(17)

The Jacobian is then

J =

 1 0

(P − 2)ϕµP−3 µP−2

 (18)

So the Fisher information can be calculated as follows

J τ (τ )

=J τ (τ ) = J′ J ξ

(
ξ(τ )

)
J

=
1

(1 + αµ)2

1 (P − 2)ϕµP−3

0 µP−2


1/µ 0

0 2µ2

1+2α


 1 0

(P − 2)ϕµP−3 µP−2


=

1

(1 + ϕµP−1)2

1 (P − 2)ϕµP−3

0 µP−2


1/µ 0

0 2µ2

1+2ϕµP−2


 1 0

(P − 2)ϕµP−3 µP−2


=

1

(1 + ϕµP−1)2

1/µ 2(P−2)ϕµP−1

1+2ϕµP−2

0 2µP

1+2ϕµP−2


 1 0

(P − 2)ϕµP−3 µP−2


=

1

(1 + ϕµP−1)2

1/µ+ 2(P−2)2ϕ2µ2P−4

1+2ϕµP−2

2(P−2)ϕµ2P−3

1+2ϕµP−2

2(P−2)ϕµ2P−3

1+2ϕµP−2
2µ2(P−1)

1+2ϕµP−2


=

1

(1 + ϕµP−1)2

1/µ+
2
[
(P−2)ϕµP−2

]2
1+2ϕµP−2

2(P−2)ϕµ2P−3

1+2ϕµP−2

2(P−2)ϕµ2P−3

1+2ϕµP−2
2µ2(P−1)

1+2ϕµP−2

 .

(19)

A.1.2 Numerical Checks on the EIM

As discussed above, the GPD does not satisfy the standard regularity conditions for max-

imum likelihood estimation when ϕ < 0. The purpose of this section is to compare our

analytical expression for the EIM to its true value (determined via numerical integration) to

determine whether and when our derived expression is a useful approximation. To calculate

the EIM numerically, we constructed a fine grid of parameter values for µ and ϕ and a long

sequence of values (ranging from 0 to 1,000) for the response variable Y . Then for each

possible outcome, y, we calculated the derivatives given in equations (21) and (22) and the

probability Pr(Y = y|, µ, ϕ, P ). We then used these values to numerically approximate the
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covariance of the score function: the EIM.

EIM Error for the GP−1 Model
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Figure 6: L1 error in the expected information matrix (EIM) as a proportion of the L1 norm
of the true EIM, which was calculated by numerical integration. The plot shows results for
the GP-1; similar results were obtained for other values of P . The derivation is exact when
ϕ ≥ 0. However, it’s only approximate when ϕ < 0 (which corresponds to underdispersion)
and the error becomes quite large close to the boundary of the parameter space.

Figure 6 shows the results of our numerical calculations for the GP-1. The color displayed in

the figure represents the L1 error in the expected information matrix (EIM) as a proportion

of the L1 norm of the true EIM; i.e., denoting the analytical and numerical values of the EIM

as Ja and Jn, respectively, the plot shows ||Ja−Jn||1
||Jn||1 . We note that this approach does not

account for error due to the GP-P’s pmf not summing to unity. Rather, it measures potential

discrepancies between our analytical expression for the EIM and a numerical approximation

of it, treating the GP-P as a valid probability distribution.

Figure 6 shows essentially no error when ϕ ≥ 0 or the parameters are far from their boundary.

As the parameters approach the boundary, however, the error is non-negligible. Although

Figure 6 shows the error for the GP-1 only, similar results hold for other values of P .

These results suggest that researchers should exercise caution in applying the GP-P to under-

dispersed data. Doing so may be reasonable when the degree of underdispersion is low or the

mean is relatively high, but researchers should be wary of situations where the parameters

are close to their boundary.

A.2 Estimation via Iteratively Reweighted Least Squares

The derivations for the Fisher scoring algorithm for a GLM follow the derivation for general

GLM’s and we refer the reader to any GLM book, such as McCullagh and Nelder (1989).
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From Equation (4), the log likelihood of a single observation, y, can be found to be

ℓ(µ, ϕ, P ) = log(µ)+(y−1) log(µ+ϕµP−1y)− µ+ ϕµP−1y

1 + ϕµP−1
−y log(1+ϕµP−1)− log(y!). (20)

The Fisher scoring model-fitting algorithm requires the derivative of the log likelihood with

respect to both µ and ϕ; thus, we provide those expressions here. The derivative with respect

to µ is given as follows:

dℓ

dµ
= µ−1 +

(y − 1)(1 + ζ(P − 1)y)

µ(1 + ζµ)
− 1 + 2(P − 1)ζy

1 + ζy
+

(P − 1)ζµ(1 + ζµ)

(1 + ζµ)2
, (21)

where, to clean the notation, we use ζ here to represent ϕµP−2. The derivative with respect

to ϕ is

dℓ

dϕ
=

µP−2 y (y − 1)

1 + ζ y
− µP−1(y − µ)

(1 + ζµ)2
− µP−1y

1 + ζµ
. (22)

We now build on these derivations for one observation to multiple observation in a regression

framework. The GP-P model can be represented using the generalized linear model (GLM)

framework of stochastic, link, and linear terms. Specifically, for a response variable, Yi,

model

Yi
ind∼ GP-P(µi, ϕ, P )

log(µi) = ηi

ηi = x′
iβ + oi

(23)

where xi is a k-dimensional vector of covariates for observation i, β is the corresponding

vector of coefficients, and oi is a fixed and known “offset.” P is treated as a known value and

could be either fully specified a priori or optimized by fitting the model with multiple values

and comparing the resulting likelihoods. Although the only theoretical requirement is that

P ∈ R, it will typically be set within several integers of the standard values of 1 and 2. ϕ is

an unknown constant that plays the role of dispersion parameter. As described in the main

text, its minimum value ϕmin(µ, P ) is a complicated function of the other parameters.

We now describe the Fisher scoring updates We first derive them for a fixed value of ϕ and

then discuss how to jointly estimate both β and ϕ.

A.2.1 Fixed ϕ

In both this section and the next, the Fisher scoring algorithm is equivalent to maximum

likelihood estimation. Its development closely follows that of a standard generalized linear
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model (GLM; see, for example, McCullagh and Nelder, 1989).

The Fisher information is the covariance of the score equations for the unknown parameters,

in this case β, where the score equation for the j-th coefficient is

Uβj
=

n∑
i=1

dℓi
dβj

=
n∑

i=1

dℓi
dµi

dµi

dηi

dηi
dβj

=
n∑

i=1

dℓi
dµi

µixij (24)

Applying equation (21) and the EIM derived in Appendix A.1, the Fisher information for

predictors j and q is given by

Jβjβq = Cov(Uβj
, Uβq)

= E(Uβj
Uβq)

= E

{[ n∑
i=1

dℓi
dµi

µi xij

][ n∑
r=1

dℓr
dµr

µr xrq

]}

= E

{
n∑

i=1

( dℓi
dµi

)2
µ2
i xij xiq

}

=
n∑

i=1

µ2
i xij xiq E

( dℓi
dµi

)2
=

n∑
i=1

µ2
i xij xiq

[
1

(1 + ϕµP−1
i )2

{
µ−1
i +

2
[
(P − 2)ϕµP−2

i

]2
1 + 2ϕµP−2

i

}]

=
n∑

i=1

xij xiq

[
1

(1 + ϕµP−1
i )2

{
µi +

2
[
(P − 2)ϕµP−1

i

]2
1 + 2ϕµP−2

i

}]
.

(25)

E
(

dℓi
dµi

)2
is one of the terms in the EIM from Appendix A.1. We can write the Fisher

information in the familiar form, J β = X′WβX, where X is the n × k design matrix and

Wβ is a diagonal weight matrix with the i-th diagonal element equal to

wi =
1

(1 + ϕµP−1
i )2

{
µi +

2
[
(P − 2)ϕµP−1

i

]2
1 + 2ϕµP−2

i

}
. (26)

Armed with this result, we can fit the GP-P model via Fisher scoring updates as follows:

b(t) = b(t−1) +J −1
β Uβ, (27)

where b(t) represents the estimate of β at the t-th iteration of the model-fitting algorithm.

Note that these Fisher scoring updates are equivalent to updating b(t) according to the

iteratively reweighted least squares (IWLS; see, for example, McCullagh and Nelder, 1989)

algorithm:
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b(t) = (X′WβX)−1X′Wβ z, (28)

where z is an n× 1 vector of “working responses,” defined as follows:

zi = ηi +
dℓi
dµi

µi

wi

, (29)

where ηi and µi are defined in equation (23), dℓi
dµi

is given in equation (21), and wi is defined

in equation (26).

If ϕ were a known value, we could simply perform updates using (28) until reaching satisfac-

tory convergence. However, because ϕ is typically unknown, we now build on these results

in Section A.2.2, showing how to adapt them to jointly estimate ϕ.

A.2.2 Joint Estimation of ϕ

In this section, we adapt the algorithm given above to estimate ϕ via maximum likelihood.

To jointly estimate both β and ϕ, we derive the joint score and EIM. We begin by placing

both β and ϕ in one vector, θ, such that, θ = (β1, β1, . . . , βk, ϕ)
′. The first k elements of the

unified score vector, Uθ, are given by Uβ, where the jth element is given in equation (24).

The last element is given by Uϕ =
∑n

i=1
dℓi
dϕ
, the derivative given in equation (22). Similarly,

the top left k×k block of the unified EIM, J θ, is equal to J β, given in the previous section.

The bottom-right element comes directly from the EIM derivation in Appendix A.1:

Jϕϕ =
n∑

i=1

2µ
2(P−1)
i

(1 + ϕµP−1
i )2 (1 + 2ϕµP−2

i )
. (30)

Finally, the covariance terms can be derived as follows:
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Jβjϕ = Cov(Uβj
, Uϕ)

= E(Uβj
Uϕ)

= E

{[
n∑

i=1

dℓi
dµi

µi xij

][ n∑
r=1

dℓr
dϕ

]}

=
n∑

i=1

µi xijE

{
dℓi
dµi

dℓi
dϕ

}

=
n∑

i=1

µi xij
(P − 2)ϕµ2P−3

i

(1 + ϕµP−1
i )2 (1 + 2ϕµP−2

i )

=
n∑

i=1

xij
(P − 2)ϕµ

2(P−1)
i

(1 + ϕµP−1
i )2 (1 + 2ϕµP−2

i )
.

(31)

Computationally, the values of the covariance are most easily computed by placing the values

of the fraction in the final line of Equation (31) in a vector, a, and calculating the matrix

multiplication X′a. The algorithm then proceeds with Fisher scoring updates as in equation

(27), but for all k + 1 parameters jointly.

A.3 Inference Procedures

Standard maximum likelihood theory tells us that

√
n(θ̂ − θ)

d→ Normal(0,J θ), (32)

where J θ is the Fisher information computed at the true value of the parameter, θ. In

practice, we only have a plug-in estimate, J θ̂, of J θ. However, because J θ̂

p→ J θ, using J θ̂

to approximate the standard error is sufficient to form asymptotically confidence intervals.

In Section 4, we form Wald-type confidence intervals for the unknown parameters in this

fashion. To form prediction intervals, we generate a Monte Carlo sample of predicted values

in a hierarchical fashion. We sample θ from its asymptotic distribution and, conditional

on each sampled value, we then sample a value for the response variable, Yi. The limits of

the prediction intervals are then formed using quantiles of these Monte Carlo samples. This

procedure could be justified in the Bayesian paradigm by an appeal to the Bernstein von-

Mises theorem because in large samples the posterior distribution is approximately equal to

a normal distribution centered at the maximum likelihood estimate with variance equal to

the asymptotic sampling variance.
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B Bounds for φ

Proposition 1. Let y ∼ GP-P(µ, φ, P ) and constrain the parameter space as in Section

2.1. Then the following statements hold:

1. Regardless of the value of P , φ has no upper bound.

2. For P ∈ (−∞, 1) ∪ (2,∞), φ has no lower bound.

3. For P ∈ [1, 2], φ > φmin = −2−P .

Proof. Take the expression for θ in Section 2.1, substitute θ
1−δ

for µ, and solve for φ to arrive

at the following:

φ =
δ(1− δ)P−2

θP−1
(33)

To see that statement (1) is true, let P ∈ R and M ∈ R+ be arbitrary. We proceed in three

cases.

• Case 1: P = 1. In this case, φ = δ
1−δ

. Set δ > M
1+M

, which implies φ = δ
1−δ

> M .

• Case 2: P > 1. Fix δ = 1/2, θ ∈ (0, 1
2
M−1/(P−1)), and substitute:

φ =
δ(1− δ)P−2

θP−1
=

(
1

2 θ

)P−1

>

(
1

2
(
1
2
M−1/(P−1)

))P−1

=
(
M1/(P−1)

)P−1

= M

(34)

Case 3: P < 1. Fix δ = 1/2 and θ > 1
2
M−1/(P−1). Now Equation (34) holds for this

case as well.

We now show that statement (2) is true. Let P ∈ (−∞, 1)∪(2,∞) and M ∈ R+ be arbitrary.

We again proceed in cases.

• Case 1: P < 1. Fix δ = −1/2, which implies that φ = −3P−2(2θ)1−P . Consequently,

φ < −M is equivalent to the statement (2θ)1−P > 32−PM = M̃ . Now set θ >

1/2M̃1/(1−P ), which is always possible within the GPD’s parameter space because δ

can take on any value in (−1, 1) for θ > 4. Now we substitute:

(2θ)1−P >
[
2
(1
2
M̃1/(1−P )

)]1−P

= M̃ (35)
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• Case 2: P > 2. Consider the related sequences θn = 1/n and δn = −θn/5 = −1/(5n).

Because δn > −θn/4, we know that θn and δn are valid parameter values for the

GPD. With some algebra, it can be shown that the related sequence for φ is φn =

−1
5
(n+ 1/5)P−2. Now set n > (5M1/(P−2) − 1/5) and substitute:

φ = −1

5
(n+ 1/5)P−2 < −1

5
(5M1/(P−2) − 1/5 + 1/5)P−2 = −1

5
(5M) = −M (36)

We now show that statement (3) is true. Let P ∈ [1, 2]. Because δ ≥ 0 corresponds to non-

negative values of φ, we can consider the case where δ ∈ [−1, 0) without loss of generality.

We now calculate the following partial derivative:

∂φ

∂θ
=

(1− P ) δ(1− δ)P−2

θP
≥ 0 (37)

Thus, for a fixed value of δ, φ is minimized when θ is equal to its minimum value: −4δ. We

now use this result to simplify the expression for φ:

φ =
δ(1− δ)P−2

(−4δ)P−1
=

δ(1− δ)P−2

4P−1(−δ)P−1
= −41−P

(
1− δ

−δ

)P−2

= −41−P (1− 1/δ)P−2 (38)

The derivative with respect to δ is then

∂φ

∂δ
= −41−P (P − 2)(1− 1/δ)P−3δ−2 ≥ 0. (39)

Thus, φ is minimized as δ approaches it’s lower bound of -1. Substituting into Equation (38)

completes the proof:

φmin = −41−P 2P−2 = −22−2P 2P−2 = −2−P (40)

Note that this bound is attainable if we allow δ = −1.
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C Log-normal Model-fitting Procedures

This appendix describes the model-fitting procedures for the log normal regression model

introduced in the main text. Section C.1 derives the gradient and Hessian for our Newton–

Raphson algorithm, and Section C.2 provides the details for the EM algorithm.

C.1 Gradient and Hessian Calculations

We drop the i subscript in this section for simplicity. We also define the following quantities

for ease of notation:

• µ = exp
{
f(x)⊺β

}
• σ = exp

{
g(x)⊺α

}
• z = (log(y)− µ)/σ for y ≥ 1; if y = 0, set z = −∞

• z̄ = (log(y + 1)− µ)/σ

• Φ(·): Standard normal cdf with Φ(−∞) = 0

• ϕ(·): Standard normal pdf with ϕ(−∞) = 0

• κd =
z̄d ϕ(z̄)− zd ϕ(z)

Φ(z̄)− Φ(z)
, for d ∈ {0, 1, 2, 3}

Notice that µ, σ, z, z̄, and κd implicitly depend on x,α, and β; we suppress this dependence

for ease of notation. In a slight abuse of notation, in this appendix we will write ℓ as a

function of its individual arguments—α and β—rather than as a function of θ = (α⊺,β⊺)⊺.

From Equation (2), we can then work out that

∂

∂β
ℓ(α,β) = −κ0

σ
f(x). (41)

Similarly, the gradient with respect to α is

∂

∂α
ℓ(α,β) = −κ1 g(x). (42)

Thus, the full gradient is given by

s(α,β) = −
n∑

i=1

 κ1i f(xi)

(κ0i/σi) g(xi)

 . (43)
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Similar calculations yield the components of the Hessian, H(θ):

∂

∂β∂β⊺
ℓ(α,β) = −

n∑
i=1

κ2
0i + κ1i

σ2
i

f(xi)f(xi)
⊺ (44)

∂

∂β∂α⊺
ℓ(α,β) = −

n∑
i=1

κ2i + κ0i (κ1i − 1)

σi

f(xi)g(xi)
⊺ (45)

∂

∂α∂α⊺
ℓ(α,β) = −

n∑
i=1

[κ1i (κ1i − 1) + κ3i] g(xi)g(xi)
⊺. (46)

Note that ∂
∂α∂β⊺ ℓ(α,β) =

[
∂

∂β∂α⊺ ℓ(α,β)
]⊺
. One potential challenge in performing these

calculations is that the numerator and denominator in κd are often quite small, so a naive

implementation can easily result in divide-by-zero errors as the denominator could, without

too much difficulty, be computationally indistinguishable from zero. One way of circum-

venting this issue is to perform the calculations on the log scale. Doing so requires carefully

using the following identity for both numerator and denominator: Given 0 < a < b,

log(b− a) = log [a(b/a− 1)] = log(a) + log(b/a− 1). (47)

The ratio b/a can also be written as exp {log(b)− log(a)}. Together, these identities allow

us to compute κd using the log-PDF and log-CDF of the normal distribution, both of which

are readily available in common statistical computing environments.

C.2 Expectation-Maximization Details

In this section, we provide details for the EM algorithm. The E-step involves calculating the

following expectation:

q(α,β) :=
n∑

i=1

EZi∼p(zi | yi,α,β) log p(Zi|α,β), (48)

Where p(Zi|α,β) is the ‘full-data’ likelihood and p(zi | yi,α,β) is the conditional distribution

of zi given yi, treating α and β as fixed. We can work out this conditional distribution as

follows:

p(zi | yi,α,β) ∝ p(zi |α,β) p(yi | zi) = Normal(µi, σ
2
i ) I{yi = ⌊exp(zi)⌋} (49)
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Thus, given Yi = yi, Zi follows a truncated normal distribution with parameters µi, σ
2
i ,

log(yi), and log(yi + 1), where the latter two parameters indicate the interval of truncation.

Calculating the above expectation requires the first and second moments of a truncated

normal random variable. Following Section 10.1 of Kotz et al. (1994), the mean and variance

can be computed as follows for a given observed value of y:

E(Z | y) = µ− κ0σ

Var(Z | y) = σ2(1− κ1 − κ2
0)

(50)

We can then easily solve for the second moment of Z as Var(Z | y) + [E(Z | y)]2. For ease of

notation, we denote the first and second moments as e1i and e2i, respectively, for observation

i. Plugging these values into the normal pdf in Equation (48) then yields the expression

given for q in Equation (11).

We now provide the gradient and Hessian of q(α,β) with respect to α:

s̃β(α) =
∂

∂α
q(α,β) = G⊺(Σ−1

α c− 1)

H̃β =
∂

∂α∂α⊺
q(α,β) = −2G⊺Σ−1

α CG

(51)

Where Σα is a diagonal matrix with i-th element equal to σ2
i = exp(2 g(xi)

⊺α), C is a

diagonal matrix with i-th element equal to e2i − 2 e1i µi + µ2
i , c = diag(C), 1 is a vector

of ones, and G is an n-row matrix with row i equal to g(xi). We use these derivatives to

perform Newton–Raphson updates to approximately maximize q. In principle, one could

perform many such updates within each iteration of the EM algorithm. In our simulations,

however, we found that it was sufficient to perform a single update within each iteration.

D Additional Case Study Figures

Figure 7 shows case counts and 95% prediction bands for the remaining 24 countries not

shown in the main paper.
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Figure 7: New cases of COVID-19 (black line) in the remaining 24 of 27 European countries
and 95% pointwise prediction bands (gray shaded area) from the discrete log-normal (DLN)
model. The model is fit to case-count data from July 1, 2020 to August 24, 2022. The last
week of plotted counts (separated by the dashed gray line) offer an out-of-sample performance
comparison.
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