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Abstract

We present a general framework for Bayesian inference of causal effects that deliv-
ers provably robust inferences based principally on the physical act of randomization.
The framework involves fixing the observed potential outcomes and forming a likeli-
hood based on the randomization distribution of a model-based discrepancy variable,
a summary of the (imputed) complete data. We show posterior consistency of the
method and derive theoretical connections to common estimators in causal inference.
We evaluate the method’s performance in several simulation studies and an applied
data analysis.

Keywords: Bayesian methods, causal inference, design-based inference, randomization,
robustness

1 Introduction

Randomization-based causal inference methods offer the promise of valid statistical inferences
based solely on the physical act of randomization. Randomization-based methods encom-
pass (a) Fisherian randomization tests (FRTs) and (b) Neymanian inferences grounded in
repeated-sample evaluations. Both sets of randomization-based methods have been used
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extensively across a variety of scientific domains. In addition to reducing the assumptions
required for inference, randomization-based methods are also appealing in that they position
the assignment mechanism as the conceptual focal point of the analysis, facilitating discus-
sion of covariate balance and the risk of hidden confounders—two central issues in applied
causal analysis.

Most Bayesian causal inference methods, in contrast, rely principally on correct specifi-
cation of outcome models with the assignment mechanism (typically independent, subject-
specific ‘propensity scores’) playing a subtler role. In fact, under prior independence of the
parameters for the assignment mechanism and the outcome model, the assignment mech-
anism drops out of the likelihood—a phenomenon that has generated considerable debate
in the literature. The ‘ignorability’ of the assignment mechanism in these cases has impor-
tant implications for the robustness of Bayesian causal inference methods. In particular,
Bayesian methods tend to be more sensitive to correct specification of outcomes models
than their Frequentist counterparts because the propensity score does not (in general) bal-
ance subject characteristics between treatment and control groups—its primary purpose in
most Frequentist methods.

Although Bayesian statisticians largely agree that the assignment mechanism is an impor-
tant component of a causal analysis, a recent review of Bayesian causal inference concluded
that “there is no consensus on how to proceed” (Li et al., 2023). Existing strategies include
(a) treating the propensity score as a covariate in the outcome model, (b) specifying pri-
ors with dependence between the propensity score and outcome model parameters, and (c)
computing frequency-based point estimators over samples from Bayesian posterior predictive
distributions. However, these strategies are not universally applicable and raise challenging
questions regarding trade-offs among competing analytical priorities, such as robustness to
model misspecification, valid uncertainty quantification, and philosophical coherence.

Setting this challenge aside, Li et al. (2023) argues that the Bayesian approach offers
several compelling advantages for causal inference, which we summarize below. First, be-
cause the Bayesian approach imputes all unobserved potential outcomes, it can be applied to
any causal estimand, even those that are only partially identified, such as individual treat-
ment effects. Second, Bayesian inferences are automatic in the sense that the inferences—
including uncertainty quantification—flow directly from the probabilistic assumptions; the
resulting posterior distributions can then be leveraged in decision-theoretic analysis to op-
timize decision making under arbitrary loss/utility functions. Third, Bayesian inferences
offer a simple, straightforward solution for incorporating prior information and pooling in-
ferences across multiple sources of information. Fourth, Bayesian methods are highly ex-
tensible and modular. In most cases, the generalization from simple parametric models to
flexible non-parametric methods (Gaussian processes, mixture models, etc.) is conceptually
straightforward.

By placing the assignment mechanism at the center of a Bayesian causal analysis, our pro-
posed framework inherits both the robustness of randomization-based methods and the ben-
efits of the Bayesian paradigm listed above. We name the resulting framework Bayesian Ran-
domization Inference (BRI) to emphasize the combination of these complementary strengths.
The key idea underlying BRI is to condition on the values of the observed potential outcomes.
We then form a discrepancy variable that involves model-based imputations of counterfac-
tuals, and we use its randomization distribution as a likelihood function.
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Because BRI combines Fisherian, Neymanian, and Bayesian ideas, it represents some-
what of a compromise among historically distinct (often opposing) statistical paradigms.
Consequently, in addition to its methodological contribution, BRI also occupies a position
of historical and philosophical interest in the field of statistics, especially in the analysis of
experiments. To place BRI in appropriate context, we briefly review the related historical
developments and discussions in Section 2. Section 3 introduces the basic framework for
BRI. Section 4 provides methodological details for nonlinear discrepancy variables, discrete
treatments, and how to implement BRI with existing Bayesian software. Section 5 provides
results regarding the frequentist properties of BRI, including posterior consistency, asymp-
totic equivalence of certain maximum a posteriori (MAP) estimators to common Frequentist
estimators, and asymptotic posterior variance calculations. Section 6 details straightforward
extensions of BRI. Section 7 concludes with a discussion of the main results, limitations, and
promising future directions.

2 Historical relevance

In this section, we briefly review early controversies surrounding randomization-based in-
ference; then we turn our attention to recently proposed Bayesian procedures that can be
viewed as precursors to BRI.

2.1 Early controversies

Neyman introduced the concept of potential outcomes in his Master’s thesis in 1923; however,
his work in this area only became well-known in the statistics community following its
posthumous publication in 1990 (Neyman et al., 1990). Fisher developed FRTs during
nearly the same time period, leading to their 1935 publication in his book, The Design of
Experiments (Fisher, 1960).

On their face, the approaches seem largely compatible in that both condition on potential
outcomes. In Neyman’s case, the approach requires conditioning on the full set of potential
outcomes, F := {y01, y11, . . . , y0n, y1n} (where n is the sample size), and testing the weak null
hypothesis of no effect on average (ȳ0 = ȳ1) via a conservative variance estimator. FRTs, on
the other hand, are designed to test the sharp null hypothesis of no causal effect for any unit;
i.e., y0i = y1i for all i. Because the sharp null implies values for the counterfactuals, it suffices
to condition on only those potential outcomes that have been observed. Inference is then
performed by comparing an observed statistic to simulated values from its randomization
distribution under the strong null.

Despite the apparent similarity of their respective methods, Fisher and Neyman were life-
long opponents of each other’s statistical philosophy. The controversy stemmed largely from
differing views on model specification and inductive inference (Fisher) vs. inductive behavior
(Neyman). In short, Fisher advocated for significance testing in the process of model speci-
fication without reference to an alternative hypothesis, and he viewed the resulting p-values
as measures of evidence that provided information even for a single experiment. In con-
trast, Neyman’s later work with Egon Pearson emphasized prespecified models, competing
hypotheses, and long-run error frequencies for decision rules. For more complete accounts of
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the controversy, we refer interested readers to Lehmann (1993) and Lenhard (2006).
Sabbaghi and Rubin (2014) argue that the controversy caused Fisher to neglect the

framework of potential outcomes, which may partially explain its delayed emergence into
mainstream statistics more than 50 years later. Despite Neyman’s and Fisher’s early dis-
agreements, their methods for the analysis of experiments (and other areas of statistics)
have since been combined into what Hubbard and Bayarri (2003) call “an anonymous hy-
brid of [their] competing and frequently contradictory approaches.” In a similar vein, Ding
(2017) points out that FRTs and Neymanian inference are often introduced in proximity
to each other early in causal inference textooks and courses with limited attention paid to
the differences between their respective null hypotheses. Thus, the Fisherian and Neyma-
nian perspectives—despite their early disagreements—have largely been unified in modern
statistical methodology under the heading of finite-population causal inference methods.

In contrast, Bayesian methods for causal inference have predominantly focused on su-
perpopulation models for potential outcomes according to the prescription given in Rubin
(1978). Historically, many Bayesians have been reticent to adopt FRTs and other non-
likelihood-based methods (e.g., Basu, 1980). Others Bayesians, including Rubin, have ar-
gued that FRTs are logically coherent but limited to the “rare situation” of assessing point
hypotheses that are credible a priori (Rubin, 1980). For their part, Neyman and Fisher both
opposed Bayesianism, viewing it as unnecessarily subjective (Berger, 2003, p. 3); though,
Fisher’s emphatic advocacy of ‘fiducial probability’ demonstrates that he recognized the
value of solving the ‘inverse problem’ (Zabell, 1992).

2.2 Recent developments

More recently, recognizing the benefits of ‘design-based’ methods, statisticians have begun
developing Bayesian randomization-based procedures in specific settings. Most of these
procedures require bounded outcomes (Humphreys and Jacobs, 2015; Keele and Quinn, 2017;
Chiba, 2018; Ding and Miratrix, 2019). To our knowledge, the only exception is the approach
of Leavitt (2023), which we discovered in preparing our manuscript. Leavitt’s approach is a
special case of our method with a binary treatment, a constant treatment effect model, and
the difference-in-means statistic. One notable difference is that Leavitt’s approach is based
on a Gaussian ‘working model’ with a robust plug-in variance estimate, but ours involves
a purely model-based randomization distribution. In large samples, our approach typically
results in an approximately Gaussian randomization distribution, but the variance could be
‘wrong’ in the Frequentist sense if the treatment effect model is misspecified. Although we
do not treat Leavitt’s proposed plug-in solution in generality, this strategy could also be
applied within our framework. We do not pursue Leavitt’s approach because BRI offers two
fully Bayesian alternatives.

The first alternative is to perform model checking and generalize the assumed causal
model when we detect deviations from its assumptions (Rubin, 1984; Meng, 1994; Gelman
et al., 1996). Specifically, this strategy involves performing an FRT for each posterior sam-
ple, effectively generating a ‘posterior predictive p-value.’ Ding and Li (2018) detail this
procedure under a standard superpopulation model for potential outcomes. This procedure
is particularly natural for BRI because the inference procedures already require computation
of the randomization distribution of a discrepancy variable.
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The second alternative is to construct specially designed discrepancy variables that pro-
vide asymptotically valid inference (in the Frequentist sense) regardless of misspecification.
In Section 5.4, we show that certain studentized discrepancies have this property, a Bayesian
analog to a recent line of work in Frequentist causal inference showing that certain studen-
tized statistics can produce FRTs that are exact under sharp nulls and asymptotically valid
under weak nulls (Ding, 2017; Loh et al., 2017; Ding and Dasgupta, 2018; Wu and Ding,
2021; Fogarty, 2020).

3 Proposed framework

This section introduces the general framework for BRI, including the problem setup, the use
of discrepancy variables, and the structure of the probability models.

3.1 Problem setup and notation

Throughout we use lowercase unbolded characters for scalars (a, θ), lowercase bold characters
for vectors (a,θ), and uppercase bold characters for matrices (A,Θ). Because all quantities
are potentially random in the Bayesian approach, we do not distinguish between random and
fixed (i.e., in the conditioning set) quantities in the notation, but we clarify this distinction
as needed.

We denote the treatment assignment by a ∈ A ⊆ R. We initially consider continuous-
valued treatments to clarify the framework, but we return to the common setting of discrete
treatments in Section 4.2. We assume the existence of potential outcomes, {yai}a∈A for all
i ∈ [n] := {1, 2, . . . , n}. Due to the fundamental problem of causal inference, we observe only
a single potential outcome, yai, for each observation (Holland, 1986). We use ya to denote
the full vector of observed outcomes. At times, we employ similar notation for all potential
outcomes under a single treatment assignment (e.g., y0). We employ the following standard
causal assumptions:

Assumption 1. (Consistency) The observed outcomes, y, are equal to the potential out-
comes under the observed treatment assignment; i.e., y = ya.

Assumption 2. (Known Assignment Mechanism) The treatments, a, are randomly assigned
according to a known stochastic assignment mechanism.

Assumption 3. (Unconfoundedness) The treatment assignments are independent of the
potential outcomes: a ⊥⊥ {ya′}a′∈A.

Later in the paper, we generalize Assumption 3 to conditional unconfoundedness given a
matrix of pre-treatment covariates, X ∈ Rn×q. BRI also requires a model for the causal effect
of treatment. To ease the initial exposition, we make the following simplifying assumption:

Assumption 4. (Deterministic Treatment Effects) Given the parameter vector, θ ∈ Rp, ya

is a deterministic function of ya′ for all a,a′ ∈ A.

The extension beyond Assumption 4 is straightforward and discussed in detail in Section
6.1. A simple example of Assumption 4 is the deterministic linear model ya = y0 + aθ.
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3.2 Discrepancy Variables

A discrepancy variable (or simply discrepancy) generalizes the definition of a statistic to
allow dependence on parameters in addition to data. This generalization is quite natural in
the Bayesian paradigm because both data and parameters are viewed as random variables.
In Bayesian model checking, discrepancies typically measure deviations from modeling as-
sumptions, as illustrated in the following example.

Example 1. Suppose we conduct a Bayesian analysis for outcomes, zi, under the assumption
of independent and identically distributed (iid) Gaussian random variables:

zi
iid∼ Normal(µ, 1). (1)

Under this analysis, a natural choice for a discrepancy variable is

d(µ) =

∣∣∣∣∣ 1n
n∑

i=1

(zi − µ)3

∣∣∣∣∣ ,
which should be small under modeling assumption (1) because the Gaussian distribution is
symmetric. Consequently, values of d(µ) much larger than values simulated from the poste-
rior predictive distribution (averaging over the posterior distribution of µ) provide evidence
against (1) and suggest that the analyst should replace it with an asymmetric likelihood. We
use the notation d(µ) to emphasize that the discrepancy is a function of µ.

To see how we apply discrepancies within BRI, consider that Assumption 4 allows us
to impute counterfactuals conditional on θ. Thus, within a posterior sampling algorithm,
we can obtain samples (a mixture of pure observables and imputations) for all elements in
ya′ for any fixed a′ ∈ A. In turn, Assumption 3 implies these values must be independent
of a. Consequently, if we specify a discrepancy, d(θ) : Rp → Rq, that measures statistical
dependence between ya′ and a, Assumptions 3 and 4 imply we should observe a value of
d(θ) that indicates little dependence relative to the known distribution of a (Assumption
2). Within the Frequentist paradigm, similar reasoning justifies the application of an FRT
under a sharp null hypothesis, Hθ. Before exploring the solution suggested by BRI, we first
explore the FRT analog in the example below.

Example 2. Consider a randomized clinical trial (RCT) designed to estimate the effect of
a medication dosage, ai, on some continuous outcome, yai. For simplicity, we assume that

ai
iid∼ Uniform(0, 1) and ya = y0 + aθ. Now consider the null hypothesis H0 : θ = 1. Under

H0, we can impute y0 as y0(θ) = ya − aθ with θ = 1. Assumption 3 then implies that
y0(θ) is independent of a, so conditional on ya, the following statistic has an expectation
approximately equal to zero:

s(θ) = Ĉov{y0(θ),a}/ V̂ar(a).

Note that s(θ) is the OLS regression coefficient of y0(θ) on a. Conceptually, s(θ) should
be small for the true value of θ because the modeling assumptions imply that a contains
no information that can be used to predict y0. The FRT then proceeds by simulating (or
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Figure 1: (Far left) Scatter plot showing linear relationship between a and ya in Example
2. (Middle left) Scatter plot showing relationship between a and y0(θ) at θ = 1. (Middle
right) Randomization distribution at θ = 1; the low p-value indicates that the FRT rejects
H0. (Far right) The density of the discrepancy (imputed statistic) in black with the 95%
Frequentist confidence interval (from test inversion) in blue.

analytically approximating) the randomization distribution of s(θ) and calculating a p-value
that quantifies the extremeness of s(θ), such as its absolute value. Figure 1 summarizes the
analysis. Setting θ = 1 and imputing y0(θ) removes some of the correlation between ya and
a in the first two panels. However, the third panel shows that the observed statistic value is
still extreme relative to the randomization distribution (p=0.0056), resulting in a rejection
of H0. The fourth panel compares the 95% confidence interval from inverting the FRT to the
density of s(θ) as a function of θ.

The Frequentist paradigm views s(θ) as a statistic because θ is fixed under H0. Within
BRI, however, θ is an unknown parameter with a plausible range of values, so the term ‘dis-
crepancy’ is more appropriate. When conducting the FRT, a value of θ is deemed plausible
if it implies a statistic that is not ‘too unlikely,’ as quantified by the p-value. The reasoning
underlying BRI is similar with one crucial exception: the plausibility of θ is quantified in
terms of a density—not a p-value. The latter two panels of Figure 1 hint that we can, in fact,
interpret the randomization distribution for s(θ) as a likelihood and obtain valid Bayesian in-
ferences without specifying a likelihood for the potential outcomes; the next section provides
the setup.

3.3 Model structure

The goal of BRI is to calculate the posterior distribution of θ given ya and d(θ). The
probability models take the following form:

p{θ|ya,d(θ)} ∝ p(θ|ya)p{d(θ)|θ,ya}j(θ), (2)

where p(θ|ya) plays the role of prior and p(d(θ)|θ,ya), of likelihood. Both of these densities
condition on ya. The final term, j(θ), is a Jacobian area adjustment term defined in Section
4.1; when d(θ) is linear, j(θ) is constant so it drops out of (2).
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The observed potential outcomes, ya, on their own provide limited information about the
treatment effect without knowledge of the assignment vector, a. Under the justifiable belief
that ya alone provides no information about θ—that is, p(ya|θ) ∝ 1—the prior employed in
BRI corresponds with the analyst’s prior before observing ya because

p(θ|ya) ∝ p(θ)p(ya|θ) ∝ p(θ).

The likelihood term, p{d(θ)|θ,ya}, is precisely the randomization distribution employed
in an FRT. In terms of Example 2, it corresponds with the middle-right panel of Figure
1. It represents the likelihood of the observed discrepancy, d(θ), within its randomization
distribution, holding the full set of potential outcomes fixed. The reason we hold the full
set fixed as opposed to only ya is that, conditional on θ, Assumption 4 implies values
for the counterfactuals. In practice, we often do not have access to a tractable closed-
form representation of p{d(θ)|θ,ya}. In these situations, we recommend approximating
p{d(θ)|θ,ya} using either (a) its limiting distribution (if available) or (b) Monte Carlo
methods. The latter involve drawing independent samples of a, computing the implied
values of d(θ), and performing density estimation at the observed discrepancy value.

Remark 1. Because p{d(θ)|θ,ya} is the same randomization distribution as that employed
in an FRT, it may be tempting to replace the likelihood with a p-value. However, this
approach generally produces anti-conservative inference. The reason is that p-values quantify
the likelihood of an event at least as extreme as the one observed; hence, these events include
outcomes much more extreme than the observed outcome.

In contrast to most Bayesian methods, which condition on purely observable quantities,
BRI conditions on the random function d(θ)—a conditionally observable quantity. In doing
so, we effectively discard information in a that we believe is unrelated to the treatment
effects. In this respect, BRI is similar to limited-information Bayesian methods (Kwan,
1999; Kim, 2002; Greco et al., 2008). More formally, we define the event of observing d(θ)
as

{d(θ)} = (θ,a) ∈ ∪
θ′∈supp(θ)

{(θ′,a) : f(θ′,a;ya) = d(θ′)},

where f is the function of observables and θ defining the discrepancy, d(θ). Crucially, we
treat θ as random in the event {d(θ)}; otherwise, the likelihood would involve computing
the density of d(θ) for all θ. Treating θ as random means that conditioning on θ in the
likelihood reveals a single plausible value of d(θ) which, in turn, reveals a plausible set of
values for a—in particular, a ∈ g−1

θ {d(θ);ya}, where gθ(a;ya) = f(θ,a;ya). In some
cases, we may choose a discrepancy that is purely observable—a statistic in the classical
sense—in which case the value of the discrepancy is constant over θ.

We now return briefly to the setting of Example 2. Example 3 below discusses a BRI
analysis of the same data.

Example 3. Within the BRI framework, s(θ) is properly interpreted as a discrepancy vari-
able because its value depends on θ. In fact, straightforward algebra reveals that

s(θ) = Ĉov{ya,a}/ V̂ar(a)− θ.

Because s(θ) is a linear function, j(θ) is constant and can be omitted in the estimation process
(in fact, j(θ) = 1 in this case). This representation also reveals that we would obtain identical
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inferences if we based the BRI analysis on the fully observable statistic Ĉov{ya,a}/ V̂ar(a)
because this statistic is simply a translated version of s(θ).

The likelihood function is precisely the function plotted in the far right panel of Figure
1. Were we to assume a uniform prior on θ, this function would also be the BRI posterior
distribution. Because the model includes only a single, scalar parameter, we could easily
estimate it by evaluating the posterior on a fine grid as we did for Figure 1. The posterior
could then be summarized by the usual quantities, such as its mean and quantiles.

3.4 Comparison to Related Methods

In contrast to randomization tests, which produce p-values for point hypotheses, BRI pro-
duces a full posterior distribution over counterfactuals, enabling automatic Bayesian infer-
ence of any sample-based estimand. An important difference between BRI and Neymanian
methods is that BRI conditions on only those potential outcomes that have been observed.
In contrast, Neymanian methods also condition on (unobserved) counterfactuals, a strategy
that would lack coherence in the Bayesian paradigm because, to a Bayesian, conditioning
implies knowledge—there would be nothing left to infer.

The primary difference between BRI and standard, superpopulation-based Bayesian
causal inference methods is that BRI does not require researchers to specify models for
the marginal distributions of potential outcomes. Instead, the key ingredient is a model
for the individual treatment effects, which typically requires substantially fewer parameters
than a full joint model. Thus, in addition to added robustness, in many cases BRI also pro-
duces simpler models with lower computational requirements relative to standard Bayesian
approaches.

4 Model Specification and Estimation

Having explained the basic structure of BRI models, we now explore several details involved
in specifying and estimating these models.

4.1 Jacobians

When d(θ) is a smooth nonlinear function, BRI applies Bayes rule on a curved manifold,
which requires us to introduce the Jacobian term j(θ) into (2). This section defines j(θ)
and provides an illustrative example showing why the Jacobian is needed. For simplicity, we
assume that the prior distribution, p(θ|ya), is defined with respect to Lp, Lebesgue measure
on Rp. Further, we introduce a regularity assumption on d(θ):

Assumption 5. The discrepancy d(θ) : Rp → Rq is Lipschitz.

Rademacher’s theorem then implies that d(θ) is also differentiable Lp-a.e. We now define
the Jacobian matrix J(θ) := ∂d(θ)⊺/∂θ and the related function

h(θ) =

{
det{J(θ)⊺J(θ)}, if p ≤ q

det{J(θ)J(θ)⊺}, otherwise.
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The following assumption imposes additional regularity, eliminating pathological cases, such
as overparametrized models:

Assumption 6. If J(θ) ̸= 0, then h(θ) ∈ (0,∞), Lp-a.e.

After observing d(θ), we know that the pair (θ,d(θ)) is confined to a manifold, M ⊂
Rp+q. In turn, Assumption 6 implies that the Hausforff dimension of M is p. We are now
in a position to define the Jacobian area adjustment factor:

j(θ) =

{
1, if J(θ) = 0√

h(θ), otherwise.
(3)

This factor follows from standard results in geometric measure theory. The case p ≤ q
can be derived from the ‘area formula,’ a generalization of the standard change-of-variables
formula in introductory calculus. The case p > q (and p = q) can similarly be derived
according to the ‘coarea formula.’ When p = q,

√
det{J(θ)⊺J(θ)} =

√
det{J(θ)}2 =

det{J(θ)}, which shows that the formulas given above are equivalent to the standard change-
of-variables formula and that h(θ) can equivalently be defined with the strict inequality p < q
for the first case. The following modification of Example 3 demonstrates why j(θ) is needed.

Example 4. As in Examples 2, we assume linear treatment effects: ya = y0+aθ. To easily

derive closed-form densities, we assume ai
iid∼ Normal(0, 1). We consider two transformations

of the following discrepancy variable:

d(θ) =
1

n

n∑
i=1

y0i(θ)ai =
1

n
(ya

⊺a− θa⊺a) .

The two transformations are d1(θ) = |d(θ)| and d2(θ) = d(θ)2. These two transformed
discrepancies should yield the same inferences because they contain the same information.
Standard computations reveal that

d1(θ)|θ,ya ∼ Half-Normal
{
y0(θ)

⊺y0(θ)/n
2
}

(4)

d2(θ)|θ,ya ∼ Gamma
{
0.5, 2y0(θ)

⊺y0(θ)/n
2
}
. (5)

However, these densities differ by a ratio of 2/|y0(θ)
⊺a|, resulting in an apparent paradox

in which the same information yields different inferences. Including the Jacobian factors
of j1(θ) = a⊺a and j2(θ) = 2a⊺a · |y0(θ)

⊺a|, respectively, resolves the paradox. Figure 2
graphically depicts d1(θ), d2(θ), and their likelihoods with and without the Jacobian adjust-
ment. The final panel reveals that an analysis neglecting the Jacobian would yield highly
anticonservative inferences in this case.

When closed-form likelihoods are available, as in Example 4, the choice of transformation
has little or no impact on the analysis. In the more common case where a closed-form
likelihood is not available, however, the choice of transformation can inform the selection
of an appropriate method for approximating the likelihood. Were we to approximate the
likelihoods in Example in 4, a Monte Carlo half-Gaussian approximation for d1(θ) would
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Figure 2: (Far left) Shapes of d1(θ) and d2(θ) from Example 4. (Middle left) Likelihood
function for d1(θ) with and without the Jacobian adjustment; the likelihoods are propor-
tional because d1(θ) is linear L1-a.e. (Middle right) Likelihood function for d2(θ) with and
without the Jacobian adjustment; with the Jacobian adjustment, the likelihoods for d1(θ)
and d2(θ) are equal. (Far right) Same as previous, except with likelihoods normalized; the
normalization reveals that the Jacobian must be included to obtain valid inferences.

perform well, but it would fail for d2(θ) because p(d2(θ)|θ,ya) increases without bound as
d2(θ) → 0; consequently, a Gamma approximation would perform much better. Similarly,
although a KDE would likely perform adequately for the untransformed discrepancy, d(θ),
its performance would be poor for d1(θ) and d2(θ) because KDEs smooth over boundary
points (zero, in this case). A better nonparametric alternative would be the local regression
density estimators described in Cattaneo et al. (2020, 2021).

4.2 Continuous outcomes and discrete treatments

[To be added later. Two solutions are (a) condition on neighborhoods of d(θ) scaled by j(θ)
or (b) use a continuous latent variable representation. The theoretical results show that (a)
results in desirable theoretical properties.]

4.3 Estimation Algorithms

In principle, we can apply any standard Bayesian computational method to estimate BRI
models. The primary challenge compared to standard Bayesian models is accurately approxi-
mating the likelihood function using density estimation techniques, which may be challenging
(or even impossible) with some existing software packages.

In our testing, we found that the NumPyro package is especially well suited to fit BRI
models due to its flexible interface and the availability of modern MCMC algorithms, such
as the No U-turn Sampler (NUTS; Hoffman et al., 2014; Phan et al., 2019; Bingham et al.,
2019). We also found that implementation in the Engine for Likelihood-free Inference (ELFI)
is particularly straightforward because ELFI’s paradigm of simulation-based likelihoods is
a natural fit for BRI’s randomization-based likelihood function (Lintusaari et al., 2018). A
key benefit of NumPyro and other automatic differentiation packages is that j(θ) can be
computed automatically; in contrast, ELFI and other packages would require the analyst to
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manually derive and program the computation of j(θ). Appendix A provides example code
for fitting the model of example 3 via NumPyro.

5 Theoretical results

[To be added later. I have derived the main results already and am actively working on
including them here. The informal takeaway is that BRI estimates the parameter value that
places d(θ) in the center of it randomization distribution (similar to a Hodges–Lehmann
estimator).]

5.1 Assumptions

5.2 Posterior consistency

5.3 Connections to common estimators

5.4 Asymptotic variances

6 Extensions

[To be added later. I have tested both of these ideas in simulation and am actively working
on adding the details here.]

6.1 Beyond deterministic models

6.2 Residualization techniques

7 Discussion

References

Basu, D. (1980) Randomization analysis of experimental data: The Fisher randomization
test. Journal of the American Statistical Association, 75, 575–582.

Berger, J. O. (2003) Could Fisher, Jeffreys and Neyman have agreed on testing? Statistical
Science, 18, 1–32.

Bingham, E., Chen, J. P., Jankowiak, M., Obermeyer, F., Pradhan, N., Karaletsos, T.,
Singh, R., Szerlip, P. A., Horsfall, P. and Goodman, N. D. (2019) Pyro: Deep universal
probabilistic programming. Journal of Machine Learning Research, 20, 28:1–28:6. URL:
http://jmlr.org/papers/v20/18-403.html.

Cattaneo, M. D., Jansson, M. and Ma, X. (2020) Simple local polynomial density estimators.
Journal of the American Statistical Association, 115, 1449–1455.

— (2021) Local regression distribution estimators. Journal of Econometrics, 105074.

12

http://jmlr.org/papers/v20/18-403.html


Chiba, Y. (2018) Bayesian inference of causal effects for an ordinal outcome in randomized
trials. Journal of Causal Inference, 6, 20170019.

Ding, P. (2017) A paradox from randomization-based causal inference. Statistical Science,
331–345.

Ding, P. and Dasgupta, T. (2018) A randomization-based perspective on analysis of variance:
a test statistic robust to treatment effect heterogeneity. Biometrika, 105, 45–56.

Ding, P. and Li, F. (2018) Causal inference: A missing data perspective. Statistical Science,
33, 214–237.

Ding, P. and Miratrix, L. W. (2019) Model-free causal inference of binary experimental data.
Scandinavian Journal of Statistics, 46, 200–214.

Fisher, R. A. (1960) The design of experiments. No. 7th Ed. Oliver and Boyd. London and
Edinburgh.

Fogarty, C. B. (2020) Studentized sensitivity analysis for the sample average treatment
effect in paired observational studies. Journal of the American Statistical Association,
115, 1518–1530.

Gelman, A., Meng, X.-L. and Stern, H. (1996) Posterior predictive assessment of model
fitness via realized discrepancies. Statistica Sinica, 733–760.

Greco, L., Racugno, W. and Ventura, L. (2008) Robust likelihood functions in Bayesian
inference. Journal of Statistical Planning and Inference, 138, 1258–1270. URL: https:
//www.sciencedirect.com/science/article/pii/S0378375807001899.

Hoffman, M. D., Gelman, A. et al. (2014) The No-U-Turn sampler: adaptively setting path
lengths in Hamiltonian Monte Carlo. Journal of Machine Learning Research, 15, 1593–
1623.

Holland, P. W. (1986) Statistics and causal inference (with discussion). Journal of the
American Statistical Association, 81, 945–960.

Hubbard, R. and Bayarri, M. J. (2003) Confusion over measures of evidence (p’s) versus
errors (α’s) in classical statistical testing. The American Statistician, 57, 171–178.

Humphreys, M. and Jacobs, A. M. (2015) Mixing methods: A Bayesian approach. American
Political Science Review, 109, 653–673.

Keele, L. and Quinn, K. M. (2017) Bayesian sensitivity analysis for causal effects from
2 × 2 tables in the presence of unmeasured confounding with application to presidential
campaign visits.

Kim, J.-Y. (2002) Limited information likelihood and Bayesian analysis. Journal of Econo-
metrics, 107, 175–193. URL: https://www.sciencedirect.com/science/article/pii/
S0304407601001191. Information and Entropy Econometrics.

13

https://www.sciencedirect.com/science/article/pii/S0378375807001899
https://www.sciencedirect.com/science/article/pii/S0378375807001899
https://www.sciencedirect.com/science/article/pii/S0304407601001191
https://www.sciencedirect.com/science/article/pii/S0304407601001191


Kwan, Y. K. (1999) Asymptotic Bayesian analysis based on a limited information estimator.
Journal of Econometrics, 88, 99–121. URL: https://www.sciencedirect.com/science/
article/pii/S0304407698000244.

Leavitt, T. (2023) Randomization-based, Bayesian inference of causal effects. Journal of
Causal Inference, 11, 20220025.

Lehmann, E. L. (1993) The Fisher, Neyman–Pearson theories of testing hypotheses: One
theory or two? Journal of the American Statistical Association, 88, 1242–1249.

Lenhard, J. (2006) Models and statistical inference: The controversy between Fisher and
Neyman–Pearson. The British Journal for the Philosophy of Science.

Li, F., Ding, P. and Mealli, F. (2023) Bayesian causal inference: A critical review. Philo-
sophical Transactions of the Royal Society A: Mathematical, Physical and Engineering
Sciences, 381, 20220153. URL: https://royalsocietypublishing.org/doi/abs/10.
1098/rsta.2022.0153.
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A Example NumPyro Code

The code below fits the model of Example 3. The code draws Monte Carlo samples for a to
approximate the likelihood via a kernel-density estimator (KDE). Alternatively, one could
apply a Gaussian approximation based on either (a) theoretical asymptotic expressions or
(b) simulated moments.

1 import numpyro

2 import jax.numpy as jnp

3 from numpyro.infer import MCMC, NUTS

4 from jax import random

5 import numpy as np

6

7

8 # Model function for computing log posterior density up to proportionality

9 def model(y, a, bandwidth_adjustment=1., num_samples=2000):

10 # Prior

11 theta = numpyro.sample("theta", numpyro.distributions.Normal(0., 10.))

12

13 # Compute discrepancy values

14 y0_theta = y - a*theta # Implied value of y0

15 s_observed = compute_s(y0_theta, a) # Observed discrepancy value

16 s_samples = compute_s(y0_theta, num_samples=num_samples) # Sampled

discrepancy values↪→

17

18 # Approximate log likelihood up to proportionality

19 bandwidth = bandwidth_adjustment * s_samples.std()

20 zs = (s_samples - s_observed) / bandwidth

21 kde_values = jnp.exp(-0.5 * (zs**2)) / bandwidth

22 log_like = jnp.log(kde_values.mean()) # Average over samples, then log

23 numpyro.factor("log_like", log_like) # Include in posterior density

24

25 # Helper function for computing (or sampling) s

26 def compute_s(y0, a=None, num_samples=2000):

27 y0_centered = y0 - y0.mean() # Center y0 for cov/var calculations

28 axis = 1 if a is None else 0 # For calculating means over correct axis

29 if a is None:

30 a = np.random.random((num_samples, y.size))

31 a_centered = (a.T - a.mean(axis=axis)).T # .T for dimension compatibility

32 cov = (y0_centered * a_centered).mean(axis=axis)

33 var = (a_centered**2).mean(axis=axis)

34 return cov / var

35

36

37 # Fit model

38 kernel = NUTS(model)

39 mcmc = MCMC(kernel, num_warmup=1000, num_samples=1000)
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40 rng_key = random.PRNGKey(0)

41 mcmc.run(rng_key, y=y, a=a, bandwidth_adjustment=0.2)

42 mcmc.print_summary()
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